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CONVERSION FACTORS

For readers who prefer to use inch-pound units, conversion factors for
the metric (International System) terms used in this report are listed below:

Multiply metric unit . BY To obtain inch—ppund unit

meter (m)’ 3.281 foot (Lt}

meter squared per second 10.76 foot squared per second
{m?/s) . (££2/s)

meter squared per second 1,549 inch squared per second
Am?/s) o {in?/s)

meter squared per minute 10.7¢ foot squared per minute
(mZ/min) (Et2/min)

meter sguared per day _ 10.76 foot squared per day
(m2/d) (£t 2/4)

pascal (Pa) 0.000009869 atmosphere

.0001450 pound per square foot (1lb/ft2)

cubic meter per minute 35.31 cubic foot per minute
{(m3/min) (Ft3/min)

grams per cubic meter (g/m3} 0.06242 pound per cubic foot {(1b/ftd)

Temperature may be converted from degrees Celsius (°C) to degrees Fahrenheit
(°F) or from kelvins {K) to degrees Rankine (°R} as follows:

°F = 1.8
°R = 1.8

Sea level: In this report, "sea level" refers to the National Geodetic
Vertical Datum of 19292 (NGVD of 1929)--a geodetic datum derived from a general

adjustment of the first-order level nets of both the United States and Canada,
formerly called "Sea Level Datum of 192%3."
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SYMBOLS USED IN TEXT

bimension

My 2p?

MI.J- 2T“ 1

MT

Description

Coefficient matrix
Conditioned c;efficient matrix
confined aguifer thickness
gtorage vector

Transformed storage vector
Concentration

Concentration vector

vector of concentration changes
Concentration of species A

Initial concentration
Specific heat at constant density
Molecular diffusivity

Binary molecular diffusivity of
species A into species B

Ef fective molecular diffusivity
Hydraulic diffusivity
Coefficient matrix

Vector constructed in the
conjugate gradient algorithm

Mass flux in molecular diffusien

Mass flux of gpecies A in
molecular diffusion

Index denoting iteration
Heat flux

Total hydraulic head



SYMBOLS USED IN TEXT

Symbol Dimension : Description
hg L Initial value of total hydraulic
head
hp L~ 12 Energy concentration
i LD Index denoting location in hori-
zontal {(x or r) directicn for
finite-difference yrid
I ' ' - Array index in a computer program
3 1.0 ndex dencting location in verti-
cal {z) direction for finite-
difference grid
J : - Array index in a compuater program
k ' - Index denoting time step
k v 2 Thermal conductivity
K - Arbitrary constant
K - Element index in a computer program
Kgat v} Saturated hydraulic condugtivity
[L-LT) - - Preconditioning matrix
(M) - Conditioned coefflicient matrix
m - ' Ratic of anisotropy, lateral to
vertical .
n _ - Humber of nodes in the finite-
difference grid
NCOL - ' Numbey of columns in computer
representation of model grid
NROW - Number of rows in computer repre-—
sentation of model grid
P mp" 2 _ Pregsure
Py ur,” 1p—2 Initial pressure
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Description

Vector constructed in the conju-
gate gradlient algorithm, gth
iteration

Specific fluid flux

vVolumetric flow rate

Energy flux

Radius in x-direction

Residual vector

Transformed residual vector

Residual matrix

Density

.Sﬁofaﬁiﬁity of a confined aguifer
Storage vector

Specifiec storage

Time

Transmissivity

arcqument for the well function
_ 2
= r</4p,t

Horizontal coordinate

Concentration wvector

Conditioned concentration vector
Partial pressure

Vertical cecordinate

Thermal diffusivity

Conjugate gradient iteration
parameter
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Conjugate gradient iteration
parametear

Arbitrary error criterion, toler-
ance at which iterations cease

Temperature
Drained lair-filled) porosity

Total (air- and water-filled
porosity)



A NUMERICAL SOLUTION FOR THE DIFFUSION

EQUATION IN HYDROGEOLOGIC SYSTEMS

By A. L. Ishii, R. W. Healy, and R. G. Striegl

ABSTRACT

This report documents a computer code for the mumerical solution of the
linear diffusion egquation in one or two dimensions in Cartesian or cylindriecal
coordinates. BApplications of the program include molecular diffusion, heat
conduction, and fluid flow in confined ground-water systems. The flow media-
may be anisotropic and heterogenous. : o :

- The model is Fformulated by replacing the continuous linear diffusion
equation by discrete finite-difference approximations at each node in a block-
centered grid. The resulting matrix equation ‘is solved by the method of pre-
conditioned conjugate gradients. The conjugate gradient method deoes not
raquire the estimation of iteration parameters and is guaranteed convergent in
the absence of rounding error. The matrices are preconditioned to decrease the
steps to convergence. The model allows the:specification of various boundary
conditions for any number of stress periods and the output of a summary table
for selected nodes showing flux and the concentration of the flux gquantity for
each time step. The model is written in a modular format for ease of modifi-
cation. ' :

The model is verified by comparison of numerical and analytical solutions
for cases of molecular diffusion, two-dimensional heat transfer, and axisym—
metric radial saturated fluid flow. Application of the model to a hypothetical
two-dimensional field situation of gas diffusion in the unsaturated zone isg
demonstrated. The input and output files are included as a check on program
installation. The definition of variables, input reguirements, flow chart,
and program listing are included in the attachments.

INTRODUCTiON

Interest in the unsaturated zone as a pathway for the movement of liquids,
gases, and solutes has increased in recent years. A recognition of the impor-
tance of the process of diffusion in both aeration and the transport of con-
taminant gases through the unsaturated zone has arisen. The diffusion eguation
describes this process in mathematical terms. An efficient algorithm, the
method of preconditioned conjugate gradients, which is particularly suited for
the solution of the diffusion equation, has also received increased attention.
The method is not widely available as a matrix-solving algorithm in numerical
models. This relatively new method is attractive in that it does not raquire
+he estimation of iteration parameters, as do other iterative methods, and has
a comparatively good rate of convergence.



The report documents a numerical model that was developed to utlilize this
algorithm in a simple and efficient medel that may be used in any process that
is described by the diffusion equation. The model is a Fortran-77! com-puter
program for the numerical solution of the linear diffusion equation in one or
two dimensions in Cartesilan or cylindrical cocrdinates. Te model is forma-
lated by replacing the continuous eguation for a vegion with a set of finite-
- difference egquations written for each node in a block-centered grid. The time
derivatives are discretized by a backwards implicit approximatien; the spatial
derivative by a central difference. The resulting matrix equation is solved
iteratively by the method of conjugate gradients.

The processes of heat transport and saturated fluid flow also are
described by the diffusion equaticn. Because the fundamental laws are of
identical form, it is possible to model heat conduction and saturated fluid
flow using the same sclution algorithms. This is accomplished by changing the
constant of proportionality appropriately. The constant of proportionality is
the same in all directions only if the medium is isotropic. 1In the case of an
anisotropic medium in two dimensions, there are two principal directions of
diffusivity., The principal directions may be aligned with the x~ and z-axis
to simplify the analytical and numerical solutions. In the model, the process
modeled and the medium anisctropy are indicated by the values of the constant
of proportionality and the ratic of anisotropy.

The derivation of the diffusion eguation is explained in terms of molecu-
lar diffusion, and the analegous equations for heat conduction and saturated
fluid flow are described. The model is verified by comparison with analytical
solutions for simple cases of molecular diffusion, heat transfer, and axisym-
metric fluid flow. The application of the model to a hypothetical field situ-
ation is demonstrated. The definition of wvariables, input regquirements, flow.
chart, and program listing are included in the attachments.

THEORETICAL DEVELOPMENT

The diffusion equation is a parabolic partial differential equation that
describes transient fleow under conecentration, tempéerature, heat, and hydraulic
head gradients. This eguation may be derived from the fundamental laws that
describe the sgteady-state flux of each guantity by using the law of conserva-
tion of mass or energy to write the equatlons of centinuity. For simplieity,
derivation of the eguation is presented for the case of molecular diffusion in
one dimension. The extension to the analogous transport equations will be
described in the next section.

luse of brand and trade names in this report is for identification pﬁrposes
only and does not constitute endorsgement by the U.S. Geological Survey.



Molecular-Diffusion Equation

Ordinary gaseous diffusion is the movement of gas resulting solely from
the concentration gradient of the gas in .an isobaric gystem. PFick's first law
states that the mass flux of the diffusing gas ls proportional to its change
in ceoncentration over space. This may be expressed for a binary system in one
dimension as

dac, -
FA=‘DABE}QA_’

where Fp 1s the mass flux of the diffusing gas A, ML"ET'1;

is the constant of proportionality commonly known as the binary
molecular diffusivity for gas A into gas B, L°T 1,

Cp 1is the concentration of the diffusing gas a, ML"3; and

X is distance in the direction of decreasing Cpr L-

The value of Dpg depends on physical constants of the gas specles as well
as the temperature and pressure of the system. Values of Dpp for various gases
may be found in a standard reference such as the Perry's Chemical Engineers'
Handbook (Perxy and others, 1984). o :

The diffusion equation is written by considering conservation of mass.
Figure 1 ghows an element in a one-dimensional clogsed system. Sinee there is
no mass flux into or out of the system, the net mags flux into any element must
equal the time rate of change of storage (concentration) within the element.
Thus, the eguation of continuity for gas A is

3Fp 3 (D acA)_acA ]

3% ax ax 3t

ax

Since the total density, pressure, and temperature of the system are consztant
in this analysis, Dpp i1s constant and the equation of continuity may be

exXpressed as
32c, aca ,
2 st

ax
which is termed Fick's second law.

For two and three dimensions, C, is differentiated twice over each addi-
tiornal direction. Fox cylindrical coordinates, Fick's second law is

3C 8Z¢ 3Ca .
DAB l -a_ (r A) -+ A = A

r 9r ar az? gt

The derivation of the diffusion equation is discussed in depth in Bird and
others (1960, p. 554-569),



Elemant |

. _ndC
@Flux m_Ddxc

where D is the diffusivity between

glements | and 2, and d-Qis the
dxe

concentration gradient from

element | to element 2.

Change in flux Tor element 2 =

where [} is the dif fusivity between

iC .
dxcls the

concentration gradient from

elements 2 and 3, and

element 2 to atement 3.

dF _ dC

dxg dt

For the instantaneous time period, dt, the change in flux
is the change in storage, dC, for element 2.

Figure 1.--One-dimensional diffusion gystem for an instantaneous

time period, dt.

Analogous Transport BEquations .

The fundamental laws for heat transfer and saturated fluid flow are analo-
gous ko Fick's first law. Fourlier's law of heat conduction states that heat
flux is proportional to the temperature gradient. Darcy's law states that
specific flux of a fluid is proporticnal to the total head gradient. These
relations and the constants of proportionality are summarized in table 1.

The equations describing unsteady heat conduction and incompressible
saturated fluid flow are analogous to Fick's second law. The eguations are

presented in table 2.



Table 1,

——Analogous eguationsg of flux

Name

of law/

pPhysical Variable Congtant of Fundamental
process Flux gradient Pproportionality law
Fick's Mass Concentra— Molecular _ F = -p ac
First/ flux, F, tion, C, diffusivity, D, dx
molecular ML ™27~ ML~ 1,271
diffusion
Fourier's/ Heat Tempera- Thermal H o= -k 48
heat flux, H, ture, 9 conductivity, k, dx
conduction MT™ ML~ 3571
Fourier'g/ Energy Energy Thermal = _, dhg
heat flux, Qp, concentra- diffusivity, q, Qr a'a;*
transfer Mz~ 3 tion, hg, 2o

MpThem2
Darcy's/ Specific .Total Saturated = x dh
saturated fluid hydraulic hydraulic d sat gy
fluid flow flux, g, head, h, ‘conductivity,
Ly L Kgaps LT!

Table 2.--Analogous transient flow equations

Physical Transient flow
process equation
Molecular diffusion ac _ D p2c
at 832'
Heat conduction 28 _ Xk 328
' 3t 3x2

Heat transfer

Saturated fluid Flow

shg _ 3%

Jt ax2

gh

== =

3t sat sz

32h




The equations presented in tables 1 and 2 are in a simple one-dimengional
form. These eguations are 1inear  and, thus, valid only for the range in which
the constants of proporticnality do not depend on the value of the dependent
variable {concentration, temperature, or hydraulic head}. The constants of
proportionality depend upon the properties of the flux quantity and the flow
media and are hereby discussed separately for the various phenomena.

For molecular diffusion, the constant of proportionality, D, depends on
the diffusing species and the medium into which it is diffusing. The binary
gaseous diffusion coefficient, Dpps is modified for diffusion in a porous
media. '

The conceptual reason for the difference is that the average path length
is increased for each gas molecule as it travels around solid particles. The
constant of proportionality, Dpg, maY be multiplied by a tortuosity factor
{less than 1.0) to account for this effect. Investigators have found that the
factor is related to the volume of voids in the medium {(drained porosity in
soils) (Cunningham and Williams, 1980). 1In addition, gas molecules may be
adsorbed onto the solids., There are various modifications to the diffusion
coefficient reported in the literature to account for these and other effects
{Wweeks and others, 1982).

The flow of heat is described in table 1 in two equivalent ways. In the
classical statement of Fourier's law, the flux quantity is temperature. The
constant of proportionality is the thermal conductivity, K.

The eguation described as heat transfer has energy concentration as the
flux quantity. The constant of proportionality 1s thermal diffusivity, a-
Thermal diffusivity is related to thermal conductivity by the equation

a = k/pépt

where p is the density of the medium, ML'3;

Cp is the specific heat capacity at constant pressure, 1277270,

and

pépe may be thought of as the thermal energy concentration per unit
volume, hg (Bird and others, 1960, p. 503).

Tn a saturated porous medium, the diffusion of energy is the time rate of
change of the energy stored in the solid matrix and the liguid in response to
the temperature gradient. -In an unsaturated system, it is the time rate of
change of the energy stored in the solid matrix and the gas in responge to the
temperature gradient. Onlike the cases of gas diffusion and fluid flow, the
so0lid matrix may contribute positively to the transfer of the energy rather
than strictly impeding it. An average thermal conductivity (diffusivity) may
be calculated for the system by adding the conductivities {diffusivities) for
the solid matrix and ligquid or gas fractions weighted by the volume of each
(Voss, 1984, p. 35-37).



For saturated fluid flow in confined porous media, the specific storage,
S,s May be important. The specific storage is a function of the volume of
voids in the medium, the compressikility of the ligquid and the medium solids,
and the arrangement of the sclids. The saturated hydraulic conductivity,
Kgatt LS divided by the storage term, Sg, O produce the hydraulic diffusivity,
oy, (Freeze and Cherry, 1979), which is the effective constant of proportional-
ity for the model. In the field of water-well hydraulics, analytical solutions
utilize the confined-aquifer parameters--transmissivity, T, and storativity, S.
These parameters are defined for a confined aguifer as

T

2m—1
Ksatb’ L T

and

S = Sq b, dimensionless,

where b is the aquifer thickness, L. Hydraulic diffusivity is then expressed
as

Dy, = T/S = Kgue/Sqr LT\,

Discussion of these parameters is found in Freeze and Cherry (1979, p. 58-62).

IMPLEMENTATION QOF NUMERICAL MODEL

The numerical model was formulated by representing the domain using a
block-centered grid. The gpatial derivatives in two dimensgions are approxi-
mated by the five-point, finite~difference, lihear operator written for each
node. The harmonic mean is used to compute the interncdal values for all
variables. Use of the harmonic mean insures continuity across cell boundaries
for variable grids and accurate no-flow boundaries (Trescott and others, 1276).
The get of eguations are solved by the method of preconditioned conjugate
gradients. Accuracy of the solution may be checked by referring to the mass
balance.

Finite-Difference Approximation

The following finite-~difference approximation is described for molecular
diffusion. The form of these eguations is identical to those describing heat
conduction and saturated fluid flow, since the egquations describing thoge
progesses are analogous.

The two-dimensional differential equation that describes the change in
concentration of a diffusing gas species at each point in a two-dimensional
system with respect to time is approximated for each node i,j (see f£ig. 2}
at time k, by the following implicit finite-difference eguation:



Ci = - o e
(bxidz4) 1.k EYBL Sk Y (D)

— (c_'_ . - O . }ﬁZ
tg = tk-l Bxf iy, LrbeddR T TR

D D
Aw Ciu i - Gy 3 Yhzs 4+ o {(C; = I T Ax:
(ﬁx)l-%;j { 1 lt:lrk lfj:k 3 <3z)l,3+% l,j‘fl,k lrjpk} X3

D .
B (EE)- S (Ci,5-1,x — Ci,3 kI&xi

where i,3 are subscripts indicating node location;
k is a subscript indicating time step;

are subscripts indicating the harmonic mean between adjacent
nodes where the harmonic mean approximation for
. 2D 'D'+ 5
b, between nodes i and i+1 1is 1.3 i 1;3 B i
Axf 34k, d A%iPiv1,5 i+171,]

is the concentration of the diffusing gas, MLT3;

!

D is Ehe1effective diffusion coefficient for the diffusing gas,
e

t is time;

Ax is the length of the finite-difference cell in the x-direction,
L; and

Az is the length of the finite-difference c¢ell in the gz-direction,
L.

Figure 2.--Arrangement of nodes for finite-
difference approximation.



The diffusion equation for the axisymmetric case may be approximated in
cylindrical coordinates at each peint (r,z) by the following implicit finite-

difference equation for each node i,j at time k:

Ci!_j.rk - Ci!j;k_l D . . r+nﬁri
2ﬂr&ri&zj Y = E;_i+&,j {Ci+1,3,xk = Ci,9,k}lz32m >
. D . i o r-Ary
AY Ji-k, (Ci-1.3,k - Ci,j,k)dzy2m

D
+ — . . - . . -
(az)i,j+s§ (Ci 301k 7 Ciyg k) 2mrdrs
+ EQ' {cy -1,k ~ Ci 5 k) 2rrhri .
z i'j_;’ ’. r rle

The resulting set of n eguations in n unknowns, where n is the total
number of nodes, may be written in matrix form (Lapidus and Pinder, 1982} as

(] ¢ = 971 - [m] 577,

where [E] is a sparse symmetric pentadiagenal coefficient matrix of
n? elements;

g is a superscript indicating iteration;

c9 1 is the concentration vector;

9 is the vector of concentration changes, ¢9 - Cg_1; and
59-1 is the solved storage vector.

The set of egquations are solved by the iterative method of preconditioned
conjugate gradients.

Boundary and Initial Conditions

In order to obtain a unigque solution to the diffusion eguation, it is
necessary to specify the boundary conditions (Ritger and Rose, 1368).
Furthermore, since diffusion and conduction processes depend upon gradients in
the time dependent variable, the initial conditions are also required (Mercer
and Faust, 1980). Two types of boundaries may be specified in the model:
Dirichlet and Neumann.

For a Dirichlet-type node, the dependent variable has a specified value
at a boundary. For the ordinary gaseous diffusicn ¢ase dlscussed earlier,

this condition is

C =K,.

where K is any constant; therefore,

ac

dt = 0.



This condition is known as constant concentration, temperature, or head
depending on the flux guantity. It also is referred to as a source or sink,
depending on whether its value is higher or lower than the local concentration.
Examples of conditions in hydrogeologic systems modeled with Dirichlet-type
nodes include the atmospheric source of oxygen at constant concentration, a
radioactive pluton, which is a continuous source of heat at a constant tem-
perature, or a constant-head river boundary to a ground-water system,

For the Neumann-type node, the change in the dependent variable normal to
the boundary is specified. Thus, the derivative of the gradient fung¢tion is
gpecified. This is expressed as

at some x along the boundary. This condition is known as specified flux. It
alsc is referred to as continuous recharge or discharge dependinyg on whether
flux is positive or negative. When K = 0, the boundary is called a no-flow or
impermeable boundary. Examples of conditions in hydrogeologic systems modeled
with Neumann~type nodes ineclude the coutinuous injection of a gas tracer, an
insulating boundary, and continuous pumping of a well. :

The program is initialized with a no-flow boundary arcund the model grid.
This is eguivalent to an impermeable zone around the region to be modeled.
Concentrations at all nodes must be set to an initial value. Flux is initial-
ized at zero for the entire grid.

The simulation period is divided into stress periods during which the
houndary conditions are constant. Each stress period is divided into time
steps. Early in a simulation, when gradients are large, transient flow condi-
tions typically change considerably. The rate of change diminishes rapidly
after the first few time steps. For efficiency, the size of each succeeding
time step may be increased by a constant factor up to a predetermined size.

In general, truncation error is proportional to the gsize of the time step;
conseguently, efficiency and accuracy need to be balanced in setting the time-
step parameters (Remson and others, 1971).

Solution by Method of Preconditioned Conjugate Gradients

The method of conjugate gradients is an iterative technique that may be
efficiently applied to large, sparse matrices such as those arising from the
discretization of parabolic partial differential equations (Wong, 1979). The
diffusion equation is of this form. Iterative techniques require less storage
than direct methods for sparse matrices since the zero diagonals between the
main diagonal and the outermost non-zero diagonal do not need to be stored.
The accuracy of the solution is determined, in part, by the size of the con-
vergence criterion and the maximum number of iterations allowed. The precon-
ditioning technique transforms the matrix .equation, and then the generalized
conjugate gradient method is applied to the transformed matrix.

10



The method of conjugate gradients has additional properties that make it
desirable for this application. The estimation of iteration parameters (the
maximum and minimum elgenvalues of the ceoefficient matrix) is not required for
convergence. Convergence is guaranteed in a maximum of n steps (where n is
the mamber of nodes in the model matrix) and residual error decreases mono-
tonically. This means that in the absence of round-off error the difference

between succeeding iterative sclutions decreases with each iteration. The
method takes advantage of the distribution of the eigenvalues {(internal as

well as the maximuan and minimum} so that convergence ordinarily occurs in far
fewer than n steps {(Concus and others, 1976, p. 317}). The rate of convergence

compares favorably with the Chebyshev iteration {Wong, 1979, p. 967), the
Strongly Implicit Procedure (81P), and the BSuccessive Over-Relaxation (SOR)
methods (Kuiper, 1984, p., 10).

The matrix eguation derived earlier {(omitting the iteration superscripts)
is

(] C = s =~ [E] C.

Reordering this into a standard mathematical form of this equation, from which
the iterated residual may be derived, gives '

[A]_}‘_:_ = _12_1
where [A] = [E], x =C, and b = 3.

The preconditioning matrix [L-LT] is selected so that the condition
nunber of the product, [M], of iL-1T1"V{a] is less than that of [A], and the
eigenvalues are clustered in groups. The condition number is a measure of the
ratic of the relative error to the relative residual. If the condition number

is large, the relative error may be much larger than the relative residual.
These factors decrease the theoretical steps to convergence (Wong, 1979).

The equation to be solved is now transformed to
[Alx = b,

where ettt (a1,

~—
—_—
i

[Ty |4 Hs

= x, and

-7~ Tp.

I

The conjugate gradient iterations are then performed on the transformed
residual ¥ = b-[Alx.

The method used to precondition the coefficient matrix was an incomplete
decomposition of the matrix into a sparse upper and lower triangular matrices
[L] and {L?] known as Incomplete Cholesky factorization (Meijerink and van der
Vorst, 1977). The non-zerog of the coefficient matrix [A] are eguated to those
of the preconditioning matrix {L-LT]_and non-zeros coefficients in [L+LT] not
present in [A] are ignored, so that [L-LT] eguals [Al+[R] where [R] is small.

11



The ¢onjugate gradient algorithm computes the iteration parameter 4 by
m1n1m1z1ng‘the function (x—x}T [A] {x—x) where x is the exact solutlon of
[Alx = b and X is the best approximate solution along the line X = X, * @

where is determined recursively to be A-conjugate {EE{A] = 0). Sincé
the true solution is not known, it is necessary to renove fggy computing
r, = b~ (Alx = [Al(x-x_}. The known vector b and [A]xg+1 may be omitted by

computing Lot recursively as ¢ (1 = £q-ag [A]Eg-
The parameter ag is

T

.- B
g T
7 Eglalag
where 4, = [M]” 'r..

To construct the set of A-conjugate vectors each Py must be orthegonal to
Pg-1 by using the equation

P R e

—g-1=g-1
The conjugate gradient algorithm involves iterating over the following
equations:

= 7 e

gm

F
s
+
=
k



The iterations are stopped when the maximum absolute value of C is less
than an input error criterion, e, for all nodes. If this occurs before the
input maximum nunber of iterations has been reached, then the model is assumed
to have converged upon a solution. This is equivalent to saying that the
magnitude of improvement per iteration has fallen below a minimum level or

agky <E

where & is selected by considering machine accuracy., computation costs, and
the problem reguilrements.

Mass Balance

The numerical accuracy and precision of the solution is checked by com-—
puting a mass balance for each time step. <convergence to within the desired
tolerance does not guarantee that the solution is accurate for the physical
process due to round-off errors and the residuals resulting from the discreti-
zation of continuous functions.

The principle of the conservation of mass (and energy} regquires that the
net flux must equal the change in storage for a closed system. The difference
between net flux and net storage is called the mass residual.

The net flux is determined by summing the fluxes througsh constant flux
and concentration nodes. Flux out of a node is considered positive, and flux
into a node is negative. The change in storage is computed by subtracting the
initial storage from the final storage for a time step for all nodes.

A measure of relative error can be computed by dividing the mass residual

by the change in storage plus initial concentration {Konikow and Bredehoeft,
1978, p- 14). Relative errcr is egual to '

. 5 _ .

AtIF + Atk (*ﬂ- Ax; (C; 4 - €1 . 4+41) +|lT— Axi(C; 5 — €4 .4
&z)i,j+% itei g i,j+l Az i,§-% i1 g 1,3—1}

constant constant .

flux . ¢concentration

nodes nodes

D D
+ |- Az PR . N —_ . P . .
(Ax)i—":,j #3037 Gy +(‘“‘)i+1,j 823613 7 Cimnlg)

_ .E_(Ci,j,k - Ci'j,k_llﬁxiQZj /S T Ci,j,o - (Ci,j,k - Ci,j,k-l) Ax; Azj
lf] i'j ) ] ] . ¥

where F is the fixed flux value for each node.
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VERTFICATION OF NUMERICAL MODEL

The performance of the model was evaluated by comparing the numerical
model solution with analytical solutions for three verification tests~--mole~
cular diffusion in one dimension, heat conduction in two dimensions, and
radial fluid flow using the cylindrical coordinate system option. The solu-
tions include those of Crank (1958) for molecular diffusion, Carslaw and
Jaeger (1959} for heat conduction, and Theis (1935) for saturated fluid flow.
Mass balance is reported for each verification test.

Molecular Diffusion in One Dimension

The first verification test is for molecular diffusion in one dimension.
Molecular diffusion is described for the transient case by Fick's second law,
given in the molecular diffusion equation section as

The initial condition for the problem is zero concentration everywhere. The
boundary conditions are

(o]
]

Cy at x = 0.

and

1t
g

C =0, at x
at all times. One soluﬁion {Crank, 1956) is

Ca (x,t) = Cnerfc(x/2JDABt),

where ¥ is the distance, in meters;
t is time, in seconds;

Cp is concentration of diffusing species A, in gramgs per cublic
meter;

Cp is concentration of species A at x = 0, in grams per cubic
meter;

Dag is the coefficient of diffusion for species A into species B,
in meters squared per day; and

erfc is the complementary error function.

For this example, the concentrations have been converted to a partial
pressure in pascals (Pa) using the standard atmospheric temperature and
pressure at sea level (STP). Partial pressures may be converted to con-
centration in grams per cubic meter by using the following formula:

Y
Xp )41 56 <mole55 MW
. =
101,325 ; '
( ’ Pa m3 / s mole

14



where Xp is the partial pressure, in pascals;
C iz the concentration, in grams per cubic meter; and

MW is the mass of a mole of gas molecules, in grams (molecular
weight). :

The following values were assumed:
x. = 10.0 Pa at x = 0.
P

and

D = 1.244 meters squared per day (mz/d}.

AB

The 20-meter grid was spaced uniformly at 0.5 m in the x-direction.

initial time step size was 0.1) second and was increased by a factor of 1.

up to a maximum of 150 seconds for the first day. The time step was then
increased to 0.10 day (8,640 seconds} and increased by a factor of 1.5 to
maximum of 190 days. :

The numerical and analytical soluticns for molecular diffusion were

The
5

a.

nearly identical (fig. 3). Mass balance error was small, raanging from 0 to

.46 percent.

10 L] T Iliiill 1 T illlll] L) T ||l|||| 1 .I l'llllli T KW mrrruy
7
- 8 - —
y x=1,0 meter
[ %]
s
o,
- I —
&+
Q
—
& 4 |
—
&5
(é) o NUMERICAL
& 2} ANALYTICAL ]
0 1 ] lo llll 1 ] I)_IJ!II L 'l l}lj_l].l L. L ]llll]l 1 L L_J 1 ti)
1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

TIME, IN SECONDS

Figure 3.-~Comparison of numerical and analytical solutions for
molecular diffusion in one dimension.
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Heat Conduction in Twe Dimensions

The second verification test is for two-dimensional anisotropic heat flow
in a thin square plate. The phenomenon is described for the transient case by
the two-dimensional anisotropic form of the diffusion equation presented in
table 2:

where m is the ratio of therwal conductivity in the z direction to that in the
% direction (anisotropy ratio), k,/k,, dimensionless. The initial condition
for the problem is a temperature (6} of 0.0 °C everywhere in the plane at time
(t) equals zero. The boundary conditions are

B{x,z,t) = 1.0 for t > 0.0 at

% = 1.0, 0 <y < 1.0;

A 1.0, 0

| A~

® 5_1.0;

which is eguivalent to saying that the left and bottom edges of the plate are

constant sources of heat. The temperature at any point in the plate at any
time is given by the following analytical solution (Carslaw and Jaeger, 1953,

p- 173):

2 (-pyn
8{x,v,t) = 1 - 16 iﬁll__e-k(2n+1)2ﬁ2t/4 cos (2n+tlimx
72 —g <2ntl 2

- (-1)n _m(2n+l}2“2tz4 (2n+l) 7z
( o {2n+l)_ = falel-1 ""———'2

The following values were assumed:

k = 0.001 m2/s

and

m= 4.0.

The 1.0~ x 1.0-m grid was spaced uniformly at 0.05128 m in the x~ and z-
directions. The initial time step size was (.00! seconds and was increased by
a factor of 1.5 for subsequent time steps up tc a maximum of 5 geconds. The
analytical and numerical solutions were virtually identical {fig. 4). Mass
balance error ranged from 0 to 3.07 percent.

Radial Axisymmetric Fluid Flow with Cylindrical Coordinates

The third wverification test i1s for a pumping well in a confined agquifer
using the cylindrical coordinate system cption. The hydraulic parameters of

1é
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Figure 4.--Comparison of numerical and analytical solutions for
heat conduction in an anisotropic square plate.

interest are usually transmissivity, T, and storativity, S. These are com-~
bined to yield the hydraulic diffusivity, Dy = T/5. Ground water flow to a
punping well in a confined axisymmetric aguifex may be described in cylindri-
cal coordinates by the following equation:

sho_ (1 3h . 3%n)

3t Dh\r Y arZ/"

The initial condition for the problem is that the head is equal to hg
everywhere in the aguifer at time equals zero. At the start of the similation,
water is withdrawn from the aguifer at a constant volumetric flow rate, Q. The

boundary condition at an infinite radial distance from the origin is a constant
head of hye .

The head, h, at any distance, r, from the well and time, t > o, is given
by the following solution (Theis, 1935): '

w .~
h{r,t} = hy = 2 [ e— qu,

where u = =>2=-—, and

the integral on the right hand side of the equation is known as the well func-~
tion, W{u). Values for W(u) are tabulated in Lohman (1972, p. 16).
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For the test problem, the:following parameter values were assumed:

hg = 100 m;

T = 0.20 m° min~ ';
0 =3 m> win™'; and
s =2x 1072,

The grid spacing was made variable in the radial direction, with an initial
size of 0.05 m increased by a factor of 1.5 for each subsequent increwment, up
to a total of 66,665 m in 68 increments.

Figure 5 shows the numerical and analytical selutions plotted as total
head versugs time at a fixed distance of 2.69 m from the origin. Relative
error ranged from 4.42x1072 o 1.11 percent. '

100 [»' B L BLALRLE | L] T T YTTIT0 T T TTITT] ¥ T T TTTrg T LILLILRRL | 1 T T LR BLELERL
=]

95 -

©  NUMERICAL -
ANALYTICAL
90 |-

85 r

80 1 radius{r)=2.69 meters

TOTAL HEAD, IN METERS

75 -

0.0001 Q.00 0.01 0.1 1 10 100 1,000
TIME, IN MINUTES

70 i Luaabaed L [ WEALTH Lot ] Lt i Lyl 1

Figure 5.--Comparison of numerical and analytical solutions for
radial fluid flow in a confined aguifer.

APPLICATION OF NUMERICAL MODEL

The model may be used to represent a one-dimensicnal flow, a two-
dimensional vertical or horizontal flow, or an axisymmetric one- or two-
dimensional flow. In this section the degsign of the bLlock-centered grid, the
choice of boundary and initial conditione, and time-step and iteration parame-
ters will be discussed. The dimensions of parameters used and the modularity
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of the diffusivity routines also will be described. These topics will be
illustrated with an example applicaticon of the program to a hypothetical field
problem. Technical requirements and possible program modifications also will
be described briefly. : o

grid Design

The simplest design for the grid elements is to consider the block-
centered uniform grid overlaid on the section of interest with the nodes
designated according to thele¢ locations. 1In'-a hydrogeclogic system, the area
to be modeled may be subdivided into regions having different diffusivity or
conductivity properties. Each node is assigned the index for the parameter
set that describes the flow properties in the medium in the block around it.
The properties are assumed constant for the block; thusg, an extremely hetero-
geneous area will require many more nodes to describe the parameter distribu-
+ions adequately. If the area to be modeled is anisotropic, the x~ and z-axes
must be aligned with the principal directions of the diffusivity or conduc-
tivity tensor.

1t ig desirable to have the nodes colncide with relevant features {for
example, wells, impermeable aquifer layers, trench boundaries, or heat sources).
In order to achieve this, it may be necessary to refine the mesh by decreasing
the spacing between nodes {Ax and Az) or implement a variable spacing scheme;
however, in designing the grid it should he remembered that truncaticn error
is roughly proportional to the grid spacing. It has been suggested that the
ratio of spacing of adjacent nodes should not exceed 1.5 to avoid large trun-
cation errors (Trescott and others, 1976, p. 30). It is important that areas
with large gradients be adequately covered with sufficient nodes to describe
the changes. A distinct contrasting zone of diffusivity or conductivity
should not be represented by a single row or column of nodes since the program
cowmputes an interblock diffusivity (cr conductivity) which is an average value
of adjacent nodes. The node spacing should be sufficiently small to have at
least two nodes for any distinct contrasting zone included. More may be
neceszary if such a zone induces large gradients. Computation time and memory
storage requirements are related to the number of nodes used; hence, efficiency
and accuracy must be balanced in the grid design. Sensitivity analyses and
consideration of mass balance results are required for each separate applica-
tion. All physical boundaries that influence the region of interest should be
included, If it is impractical to include a distant boundary, its effect '
should be simulated by making model boundaries sufficiently large to avoid
artificial boundary effects. This should be verified by sensitivity analyses.
Impermeable boundaries do not have to be explicitiy entered since the model
grid is initialized with a no-flow boundary around the region, unless the
boundary is irregular.

The boundary conditions may be imposed for the entire simulation period
or as a step function for selected stress periods. The initial conditions may
be set to represent the steady-state condition if desired, however, the simg-
lation will respond to these conditions unless the system is in stable
equilibrium at the start of the simulation.
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Although the grid is input as a two-dimensiocnal array, it is changed
internally to one-dimensional array or vector of WROW by NCOL elements, where
NROW is the number of rows in the grid and NCOL is the number of columns in
the grid. Vector storage reduces the computaticnal time becquse_computers
find elements in a vector more quickly than in a two-dimensional array.
Elements are assigned so that if node I,J is element K

node I-1,3 is K-1,
node I,J3-1 is EK~NCOL,
node I,J+1 is K+NCOL, and

node I+1,J is ¥+1i.

The vector identification of element I,J is the product of (I-1) and NCOL+J.

Input Parameters

The units of the input parameters may be in any system convenient to the
user; however, the selected units mast be consistent for all model input.
Confusion may arise due to the several possible ways of describing the flux
quantity. For example, mass concentration may be in mass per volume, parts per
million, or partial pressures. Thermal gradients may be described in terms of
temperature or enerqgy ceoncentration. The constants of proportionality usually
have the dimensions L2p~! except for thermal conductivity, which has the
dimensions MLT 26~). The units used to express the specified constant-flux
nodes mist be consistent with the units of the constants of proportionality
and with the units of length and time used in setting up the model grid.

The simulation parameters include the time-related variables such as the
initial time-step size, time-step multiplier, maximum time-step size, stress-
period length, and number of stress periods. These variables will differ
according to the problem being simulated, consequently, it is not possible to
state a gingle rule for selecting values for these variables. The time steps
should be small encugh so that the concentration or head does not change
significantly in a single time step. The determination of a significant
change is up to the user's judgment; however, a value of about 10 percent has
been suggested {Voss, 198B4). Concentration, temperature, or head changes are
expected to be more rapid at the start of a stress period; hence, the time
steps may be increased by some factor as the simulation progresses. The value
of the maximum time step is problem dependent and the user's judgment maxst be
applied to select an appropriate value of the rapidness of change after the
start of a stress period. The appropriateness of the time-step selection may
be checked by numerical experimentation involving comparisons of results from
simulations with various time steps.

The iteration parameters are the maximum number of iterations and the

error criterion for closure. &s the error criterion is decreased, the mumber
of iterations required will increase. If convergence is not obtained within

some limit of iterations, the temporal or spatial digcretization may be too

20



coarse or the error criterion too small for the sPécified number of iterations.
Tf the concentration values are oscillating as the maximum number of itera-
tions are reached, the problem may be the temporal or spatial discretization.

possible Program Modifications

The numerical algorithms are coded in Fortran=77 in the structured pro-
gramming style. Each function within the program is in a modular subroutine
called from the main program or program subunits. All input and output is
handled in the main program excepht that which relates to the boundary condi-
tiens for individual stress period which are read in a subroutine called at
specified time intervals. The subroutine and function descriptions and progran
flow chart are in attachment C. '

The constants of proportionality are read in as material parameters. The
constants are stored in a function, which is called as needed throughout the
program. A function for storativity with a defanlt value of 1.0 also is pro-
vided. The constant of proportionality may be decoupled into parameters wnique
o the flux guantity and the medium with appropriate modification of the two
function modules. As an example, the effective diffusivity for gas diffusion
in a porous medium may be decoupled into separate diffusivity and storativity
funetions. Within the diffusivity function, one parameter may describe the
diffusion of gas into air (binary diffusion coefficient) and others describe
the impeding effect of the solid particles. Parameters read into the stora-
tivity routine might include the gas-solid~liquid distribution coefficients
to describe storage by dissolution and sorption. The basic equations may be
modified to include reaction texms linked to concentration, 1f required, to
account for radioactive decay or biological consumption. An example of such
modification to the diffusion equation is found in Weeks and others {1982,

p. 1370}. The program is dimensioned to accept up te 8 parameters for up to
20 different materials. .

The program has been compiled and run on the PRIME 750 computer with the
F77 Rev. 20.2.2 compiler, the SUN 3/260 computer with the SUN release 3.4 ¥77
compiler both with and without the floating point accelerator, and the IBM AT
computer with the Ryan-McFarland version 2.11 compiler. The Ryan-McFarland
compiled version required 174 kilo bytes for storage of the executable program
as dimensioned in this report. A desirable modification is changing the dimen-
sions of arrays to fit individual program needs in order to reduce memory
requirements. The amount of memory required to run the program is dependent
upon the size of the model grid, the convergence criterion selected, the simu-
lation time period, and the number of constant head or flux nodes specified.

Example Application

This section describes the application of the model to a hypothetical
field situation. The input and output files are included so that the user may
test the model on a different computer system. The simulation was run on a
PRIME 750 computer with the F77 revision 20.2.2 compiler. Model output is
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plotted using Integrated Scftware Systems Corporation DISSPLA version 10.0
software plotting package. The user should net expect a plot of the results
to match the illustrated plot exactly because different interpolation schemes
are employed for different software, and all are sensitive to the levels of
precision available on the operating system.

The area to be modeled is a geologic section of unsaturated glacial
deposits (fig. 6). Methane is being produced from wastes in a trench (left
boundary) and is diffusing inte the unsaturated zone. The problem is to
determine the concentration of methane, as a partial pressure, at the site 15
vears after burial. It is assumed that the concentration of methane in the
trench has a mean constant value of 3.0 Pa during the period simulated. This
partial pressure is sufficiently low to exclude convection by total pressure
differentials, since total atmospheric pressure is approximately 100,000 Pa.

The diffusivity of methane in free air at STP {standard temperature,
273.2 K, standard pressure, 1 atmosphere) is reported in Katz and others
{1959, p. 100) as 1.693 wm/d. It is corrected by the egquation of Bird and
others (1960, p. 507) for ambient pressure and temperature conditions. The

equation is

- 1.823
Dap = Dagl1-0 atwm/P)(9/273.2 Kx) ,

where Dpp is the diffusion constant at STP, in meters squared per day;
P is the mean annual pressure at the site, atmosphere; and

8 is the mean annual temperature at the site, K. -

The mean annual temperature is assumed to be 10.3 °C in the air and
12.8 °C below the surface. The pressure at the gite is assumed to he 0.973
atmospheres for the zone from the surface to 15 m below the surface. These
represent typical continental conditions. :

The effective diffusivity for gas diffusion in the g0il ig determined hy
the equation of Millington and Quirk (1960) ralating effective diffusivity to
the drained (air-filled) and total (air- and water-filled) porxosities. The
aquation is

11073
: =D 2 __ [
Dert AB T
' T

where Degf is the effective diffusivity coefficient, in meters sguared

per day; .
np 1is the drained porosity, dimensionless; and
np 1s the total porosity, dimensionless.

Table 3 shows the drained and total porosities, the diffusivity, and the
effective diffusivity for each layer. The effective diffusivity was input to
the model as the constant of proportionality {(table 4, data st 13}. fThe
ratio of anisotropy is one since each layer is assumed isotroic.
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Table 3.--Calculation of the effective diffusivities
for the example application

[nps drained porosity; Tip e total porogity, Dpgr diffusivity in air;
Darer effective diffusivity; mzd'1, meters squared per day;
dashes indicate nc data) :

D Tipy
Material Material {(dimen- (dAimen-~ Dag Doef
identifier description sionless) sionless) {mzd_1) (mzd"1)
] atmosphere - ' - 1.5693 1.862
2 silt .30 .43 1.892 . 1850
3 clayey .02 .32 1.892 .00004012
silt
4 pebbly .29 .35 1,892 .2493
sand _
5 weathered 0 03 - L0000017
shale
bedrock,
partially
saturated!l

lFor the weathered saturated shale bedrock, a value arbitrarily close ta
zerc was selected to reflect a nearly impermeable boundary.
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The area is modeled with a grid of 53 nodes spaced 1.3 m horizontally by
36 nodes spaced 0.6 m vertically (table 4, data sets 5 and 6). There are five
material types in the grid and each is listed in table 3 along with a degcrip-
tion. The grid extends 10 nodes on the right beyond the pictured area in the
cross section because sensitivity analyses results indicated that boundary
effects from the artifical boundary were of the same order of magnitude as the
modeled concentration when fewer nodes were used, Because the concentration
gradients are expected to be larger in the z-direction due to the existence of
horizontal layers of contrasting diffusivity, the nodes were spaced more
¢losely in the z-direction than in the x~direction. Each layer is assumed to
be isotropic with respect to diffusion. The data set describing the material
properties distribution in the medel grid is shown in table 4, data set 8.

The initial time step is set at 0.10 day, with a time-step multiplier of
1.5 to a maximum time step of 75 days. At the start of the simulation, the
concentrations are changing rapidly, hence, the small initial time step. The
convergence criterion was set at 0.001 Pa and the maximum number of iterations
to 100. The time-step and convergence parameters were adjusted until mass
balance error was less than S5 percent for all time steps. These parameters
are shown in table 4, data sets 2 and 3.

The initial con¢entration {(as a partial pressure} of methane is assumed
to ke atmospheric {0.18 pa) everywhere. Concentration is input in units of
pascals. " The boundary conditions are constant throughout the simulation period
of 15 years (table 4, data set 12}, These are the concentration of methane at
the trench and the concentration of methane in the atmosphere. The constant
concentration nedes act as a source at the tranch boundary and as a sink at the
soll-atmosphere interface. These conditions are coded in table 4, data set 14.

A partial listing of the output file is shown in tabkle 5. The table
includes the entire output file to the end of the first time step and the con-
centrations at 5,447 days (time step 86). The concentration data at 5,447
days are contoured and plotted in fiqure 7.

Diffusion to the atmosphere accounts for low concentration in the upper
silt unit. The very low drained porosity of the clayey-silt unit effectively
precludes diffusion through it. The methane in the sand unit moves laterally
relatively quickly as escape to the atmosphere is cut off by the clayey silt
above and the partially saturated, weathered shale bedrock unit below.

This application is a simple example of a field situation that demon~
strates the effects of effective diffusivity and boundary conditions in twe
dimensions. The simulation of this problem on different computers (the IBM~AT
and the SUN 3/260) produced slightly different results in the mass balance and
number of iterations required, However, the concentrations were in excellent
agreement. ' i
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